Diketahui Fungsi f(x)=(x+2)/(x-5) dan g(x)=2x+3, Maka (g ∘ f)^-1(x)=


Diketahui fungsi $f(x)=\frac{x+2}{x-5}$ dan $g(x)=2x+3$, maka $(g\circ f)^{-1}(x)=$...

A. $\frac{5x+11}{x-5}$

B. $\frac{5x-1}{x+11}$

C. $\frac{5x-11}{x-5}$

D. $\frac{x-5}{5x-11}$

E. $\frac{x+5}{5x-11}$

Diketahui:

$f(x)=\frac{x+2}{x-5}$

$g(x)=2x+3$

Ditanya: $(g\circ f)^{-1}(x)=$

Jawab

$(g\circ f)(x)=2(\frac{x+2}{x-5})+3$

$(g\circ f)(x)=\frac{2x+4}{x-5}+3$

$(g\circ f)(x)=\frac{2x+4}{x-5}+\frac{3(x-5)}{x-5}$

$(g\circ f)(x)=\frac{2x+4+3x-15}{x-5}$

$(g\circ f)(x)=\frac{5x-11}{x-5}$

Cara 1

misal $(g\circ f)(x)=y$

$\frac{5x-11}{x-5}=y$

$(5x-11)=y(x-5)$

$5x-11=yx-5y$

$5y-11=yx-5x$

$5y-11=x(y-5)$

$\frac{5y-11}{y-5}=x$

$(g\circ f)^{-1}(x)=\frac{5x-11}{x-5}$

Cara 2

$f(x)=\frac{ax+b}{cx+d}\to f^{-1}(x)=\frac{-dx+b}{cx-a}$

$(g\circ f)(x)=\frac{5x-11}{x-5}$

$(g\circ f)^{-1}(x)=\frac{5x-11}{x-5}$

Jawaban : C

Muda Berkarya Intelektual Normatif