Carilah nilai $\lim\limits_{x\to 4} \frac{x^2-16}{x-4}!$




Soal

Carilah nilai $\lim\limits_{x\to 4} \frac{x^2-16}{x-4}!$

Penyelesaian

Soal ini, bisa dikerjakan menggunakan cara memfaktorkan terlebih dahulu, karena jika langsung menggunakan cara substitusi, hasilnya akan $\frac{0}{0}$

$\lim\limits_{x\to 4}\frac{x^2-16}{x-4}=\lim\limits_{x\to 4}\frac{(x+4)\cancel{(x-4)}}{\cancel{x-4}}$

$=\lim\limits_{x\to 4}x+4$

substitusi $x=4 \to x+4$

$=4+4$

$=8$

Kesimpulan

Jadi, Nilai $\lim\limits_{x\to 4} \frac{x^2-16}{x-4}=8$

Perhatian

$x^2-16=(x+4)(x-4)$

Cek

$(x+4)(x-4)=x^2+4x-4x-16=x^2-16$