$\lim\limits_{x\to\infty}({\sqrt{2x^2+5x+8}}-\sqrt{2x^2+2x-1})=\dots$

limit tak hingga

$\lim\limits_{x\to\infty}({\sqrt{2x^2+5x+8}}-\sqrt{2x^2+2x-1})=\dots$

A. $\frac{3}{2\sqrt{2}}$

B. $\frac{3}{4}\sqrt{2}$

C. $-\frac{3}{2\sqrt{2}}$

D. $-\frac{3}{4\sqrt{2}}$

E. $3$

Penyelesaian

PERINGATAN!!

$\lim\limits_{x\to \infty}(\sqrt{ax^2+bx+c}-\sqrt{ax^2+qx+c})$ maka dapat diseleaikan dengan $\frac{b-q}{2\sqrt{a}}$

Jawaban

$\lim\limits_{x\to\infty}({\sqrt{2x^2+5x+8}}-\sqrt{2x^2+2x-1})=\dots$

$a=2$

$b=5$

$q=2$

$\frac{b-q}{2\sqrt{a}}$

$=\frac{5-2}{2\sqrt{2}}$

$=\frac{3}{2\sqrt{2}}$

$=\frac{3}{2\sqrt{2}}\times \frac{\sqrt{2}}{\sqrt{2}}$

$=\frac{3\sqrt{2}}{2\times 2}$

$=\frac{3\sqrt{2}}{4}$

$=\frac{3}{4}\sqrt{2}$

Kesimpulan

Jadi nilai $\lim\limits_{x\to\infty}({\sqrt{2x^2+5x+8}}-\sqrt{2x^2+2x-1})=\frac{3}{4}\sqrt{2}$

Jawaban: B


Muda Berkarya Intelektual Normatif