Diketahui F'(x)=6x^2-2x+3. Jika F(2)=12

Integral

Diketahui $F'(x)=6x^2-2x+3$. Jika $F(2)=12$, $F(x)=\dots$

A. $2x^3-x^2+3x-7$

B. $2x^3-2x^2+3x+8$

C. $2x^3-x^2+3x-6$

D. $2x^3-x^2+3x+12$

E. $2x^3-2x^2+3x-15$

Diketahui:

$F'(x)=6x^2-2x+3$

$F(2)=12 $

Ditanya:$F(x)$

jawab

$F(x)=\int F'(x) dx$

$F(x)=\int (6x^2-2x+3)dx $

$F(x)= \frac{6}{2+1}x^{2+1}-\frac{2}{1+1}x^{1+1}+3x+C $

$F(x)=\frac{6}{3}x^3-x^2+3x+C$

$F(x)=2x^3-x^2+3x+C $

mencari nilai C

$F(2)=12$

$12=2x^3-x^2+3x+C $

$12=2(2)^3-(2)^2+3(2)+C$

$12= 16-4+6+C$

$12=18+C$

$-6=C$

Kesimpulan

Jadi, $F(x)=2x^3-x^2+3x-6$

Jawaban: C

Muda Berkarya Intelektual Normatif