Jika f(x)=3x-2 dan g(x)=(x+2)/(x-5)


 

Jika $f(x)=3x-2 $ dan $g(x)=\frac {x+2}{x-5}$, fungsi $(g \circ f)^{-1}(x)=...$

a. $\frac {3x}{3x-7} $

b. $\frac {3x}{3x+7} $

c. $\frac {3x-7}{3x} $

d. $\frac {3x-3}{7x} $

e. $\frac {7x}{3x-3} $

Pembahasan

Diketahui:

$f(x)=3x-2$

$g(x)=\frac {x+2}{x-5} $

Ditanya:

$(g\circ f)^{-1}(x) =...$

jawab

mencari nilai $(g\circ f)(x)$ terlebih dahulu

$(g\circ f)(x)=(g(3x-2)) $

$(g\circ f)(x)= \frac {(3x-2)+2}{(3x-2)-5}$

$(g\circ f)(x)=\frac {3x}{3x-7} $

cara manual

misal $(g\circ f)(x)=y=\frac {3x}{3x-7} $

$y=\frac {3x}{3x+7} $

$y(3x-7)=3x$

$3xy-7y=3x$

$3xy-3x=7y $

$x(3y-3)=7y$

$x=\frac {7y}{3y-3} $

$(g\circ f)^{-1}(y)=\frac {7y}{3y-3} $

$(g\circ f)^{-1}(x)=\frac {7x}{3x-3} $

cara cepat

$f(x) = \frac {ax+b}{cx+d}\to f^{-1}(x)=\frac {-dx+b}{cx-a} $

$a=3$

$b=0$

$c=3$

$d=-7$

$(g\circ f)(x)= \frac {3x}{3x-7}$

$(g\circ f)^{-1}(x)= \frac {7x}{3x-3}$

Kesimpulan

Jadi, fungsi inversnya adalah $(g\circ f)^{-1}(x)= \frac {7x}{3x-3}$

Jawaban:e



Muda Berkarya Intelektual Normatif