Diketahui f(x) = (x+7)/(5x-2)


Diketahui $f(x) = \frac {x+7}{5x-2}, x\ne \frac {2}{5} $ maka $f^{-1}(x) = ... $

A. $\frac {2x+7}{5x-2}, x \ne \frac {1}{5} $

B. $\frac {5x-2}{x+7}, x \ne -7 $

C. $\frac {7x+1}{-2x+5}, x \ne \frac{5}{2} $

D. $\frac {x-2}{5x+7}, x \ne -\frac {7}{5} $

E. $\frac {2x-7}{5x+1}, x \ne -\frac {1}{5} $

Penyelesaian

Diketahui:

$f(x) = \frac {x+7}{5x-2}$

Ditanya:

$f^{-1}(x)$

Jawab

Cara Manual

misal $f(x) = y = \frac {x+7}{5x-2}$

$y=\frac {x+7}{5x-2} $

$y(5x-2)=x+7 $

$5xy-2y=x+7 $

$5xy-x=2y+7 $

$x(5y-1)=2y+7$

$x=\frac {2y+7}{5y-1} $

$f^{-1}(y)= \frac {2y+7}{5y-1} $

$f^{-1}(x)= \frac {2x+7}{5x-1} $

Cara Cepat

$f(x)=\frac {ax+b}{cx+d} \to f^{-1}(x)= \frac {-dx+b}{cx-a} $

$f(x) = \frac {x+7}{5x-2}$

$a=1$

$b=7$

$c=5$

$d=-2$

$f^{-1}(x)= \frac {2x+7}{5x-1} $

Kesimpulan

Jadi, nilai inversnya adalah $f^{-1}(x)= \frac {2x+7}{5x-1} $

Jawaban : A


Muda Berkarya Intelektual Normatif